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Abstract. Human cognition inspired the earliest algorithms for game-
playing computer programs. However, the studies of human and com-
puter game play quickly diverged: the Artificial Intelligence community
focused on theory and techniques to solve games, while behavioral sci-
entists empirically examined simple decision-making in humans. In this
paper, we combine concepts and methods from the two fields to investi-
gate whether human and AI players take similar approaches in an adver-
sarial combinatorial game. We develop and compare five models that
capture human behavior. We then demonstrate that our models can pre-
dict behavior in two related tasks. To conclude, we use our models to
describe what makes a strong human player.

1 Introduction

Developing a computer program to play a given game as well as the best human
players was a significant challenge for early computer scientists, even predat-
ing the term artificial intelligence [1,2]. Much of the initial progress in game-
playing AI was inspired by examining human gameplay and formulating games as
search problems [3]. Subsequently, the Artificial Intelligence community focused
on developing algorithms, approaches and concepts in order to improve com-
puter game play for more games in more domains (Checkers [4], Poker, Chess [5]
and Go [6–8]), while generally ignoring potential similarities to human thought
processes. Meanwhile, psychologists, neuroscientists and economists have built
successful models for human reasoning in simple decision tasks, while ignoring
games with large decision spaces [9,10]. Recent approaches have begun using
human game play to train stronger AI agents [7].

In this paper, we present AI-based computational models for the behavior
of non-expert human players in a simple, adversarial, full-information game.
Our models formalize hypotheses for the cognitive processes by which a human
player makes a decision on a given task; the models we consider simulate human
responses to game positions, making similar decisions to human players. We aim
to determine whether modern AI concepts such as heuristic search [3] are useful
in explaining human play.

We compare the ability of our models to predict subjects’ choices during
regular game play. We further show that our main model can predict behavior
in two related tasks. Finally, we investigate how strongly the playing strength
of our subjects is related to our main model’s algorithmic properties, such as
search depth, tree size, and the quality of the heuristic function.
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2 Experimental Methods

We collected data from human subjects playing a simple board game. Two play-
ers take turns placing pieces on a 4 by 9 board (Fig. 1A). The black player makes
the first move. The goal is to place four consecutive pieces in a row, column, or
diagonal. We chose this game because the rules are few and easily learned, it is
unfamiliar to our subjects, and it is sufficiently hard to master without being
computationally intractable.

We performed two experiments on human subjects with a total of four tasks:
(1) playing full games against a human opponent, (2) playing against AI oppo-
nents with different playing strengths, (3) deciding between two alternative
moves on a given board position (2AFC) (Fig. 1B), and (4) evaluating their
winning chances in a given board position (Fig. 1C).

Experiment 1: We recruited 40 subjects and divided them into 20 pairs. Sub-
jects in each pair played multiple games against each other without time con-
straints, switching colors after every game. The experiment terminated after
subjects had played for one hour and finished their last game.

Experiment 2: We recruited 40 additional subjects to perform three tasks. For
the first 30 min, subjects played games against AI opponents, switching colors
after every game. To make it less likely for subjects to latch onto any particu-
lar opponent’s idiosyncrasies, and to keep play challenging for all subjects, we
selected opponents from a set of 30 AI agents with different playing strengths.
We switched to a stronger opponent every time the subject won a game, and to a
weaker opponent whenever they lost. In the second task, subjects saw board posi-
tions and chose between two marked candidate moves (Fig. 1B). We selected the
positions and candidate moves to create difficult choices for subjects. In positions
where both candidate moves had the same game-theoretic value, the subject’s
choice indicates a subjective preference. On trials where one move was strictly
better than the alternative, the subject’s choice can be used to measure their
playing strength. The third and final task, board evaluation, required subjects
to rate board positions from 1 (‘losing’) to 7 (‘winning’) from the perspective
of the current player. In the second and third task, each subject completed 84
trials.

Fig. 1. A: Example of a game position. B: On a trial of the 2AFC task, subjects see a
board position with two possible moves, and indicate their preference. C: On a trial of
the evaluation task, subjects see a board position and estimate their winning chances
on a 7-point scale.
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3 Models of Human Behavior

Our goal is to build a computational model that mimics how human subjects play
our game. A model of behavior is an algorithm that, given a board state s, selects
a move a ∈ A(s) from the set of available moves A(s). To account for variability
in human choices, our models contain multiple sources of stochasticity. Since
players may vary in their decision processes and cognitive abilities, our models
have parameters, which we fit to individual subjects. In this section we discuss
the following seven items: heuristic function, sources of variability, myopic model,
main model, conv-net model, opt-rand model, and fitting the model parameters.

3.1 Heuristic Function

Most of our models rely on a heuristic function that assigns a value to each board
position. Our heuristic function is a weighted sum of five features. Each feature
is counted separately over a player’s own pieces and their opponent’s pieces. The
first feature, which we call the center feature and denote by f0(s, c), measures
the number of pieces of color c on the 12 central squares of the board s. The other
four features (Fig. 2), denoted by fi(s, c) with i = 1, . . . , 4, count how often the
following patterns occur on the board (horizontally, vertically, or diagonally).

1. Connected 2-in-a-row: two adjacent pieces with sufficient empty squares
around them to complete 4-in-a-row.

2. Unconnected 2-in-a-row: two non-adjacent pieces which lie on a line of four
contiguous squares, with the remaining two squares empty.

3. 3-in-a-row: three pieces which lie on a line of four contiguous squares, with
the remaining square empty. This pattern represents an immediate winning
threat.

4. 4-in-a-row: four pieces in a row. This pattern appears only in terminal boards.

We handpicked these features to reflect heuristics that are intuitive given the
goal of the game. We tested additional features, but none of them improved the
main model’s fit to human play. However, a more systematic approach to select
these features is a natural direction that we leave for future work.

Fig. 2. Patterns in the heuristic function. The four features in our heuristic func-
tion. Each feature counts how often one of these patterns occurs on board (horizontally,
vertically, or diagonally).
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Fig. 3. Heuristic function. In this position, white is to move. Black has 5 pieces on
the central squares, white has 4 (marked with blue dots). Black has two connected
two-in-a-rows (purple), one unconnected two-in-a-row (orange) and one three-in-a-row
(green). White has no instances of any pattern. The value of this board state, from
white’s perspective, is therefore H(s) = −w0 − w1 − 2w2 − w3. (Colour figure online)

We associate a weight wi to each of the five features, and write the heuristic
function as

H(s) = cself

4∑

i=0

wifi(s, own color) − copp

4∑

i=0

wifi(s, opponent color)

where cself = C and copp = 1 whenever the player is to move in state s, and
cself = 1 and copp = C when it is the opponent’s move. The scaling constant C
is a fitting parameter which can vary between subjects. Figure 3 demonstrates
a calculation of the heuristic function in an example board state, taken from
human play.

The weight parameters W = {w0, w1, . . . , w4} vary between subjects. They
encode differences in subjects’ preferences, such as their relative inclination to
make direct threats (3-in-a-row) over indirect strategic maneuvers (unconnected
2-a-in-row).

3.2 Sources of Variability

Unlike deterministic AI agents, realistic models for human behavior must sup-
port variability. Our models are required not only to identify the subject’s most
likely move given a position, but also to assign some probability to their noisy
and inconsistent decisions.

We introduce three sources of variability in our models. (a) Value noise:
We add Gaussian noise to the heuristic value of each state, reflecting a human
tendency to choose almost arbitrarily between two moves of roughly equal value.
(b) Feature dropping: When counting instances of any one of our patterns, we
exclude with probability λ every possible location-orientation combination where
that pattern may occur. This mechanism represents lapses of attention, where
a subject overlooks a pattern in some region on the board. We denote this
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Algorithm 1. Myopic-model(State s, Parameters {λ,W, lapse}):
1 if lapse then
2 return random-move

3 else
4 return argmaxa∈A(s)Hλ(T (s, a)) +N (0, 1)

modified heuristic function by Hλ(s). (c) Lapse rate: On each move, there is
some probability that the model makes a completely random move, capturing
human moves with no apparent rationale behind them. The lapse rate, feature
dropping rate (λ), and feature weights are all model parameters. We now describe
the five specific models that we test.

3.3 Myopic Model

After checking for a lapse, the Myopic model (shown in Algorithm 1) uses a
heuristic function with value noise and feature dropping to evaluate every pos-
sible move on a given board position; it then selects the move with the highest
value. We use T (s, a) to denote the resulting state by applying action a to state s.

3.4 Main Model

Our main model (described in Algorithm 2) builds a partial game tree similar to
algorithms such as Minimax, alpha-beta pruning, and Monte-Carlo Tree Search.
Each state is represented as a node in the tree. Each node n has a value estimate
V (n) and a set of successors Succ(n).

On each execution, the model initially determines whether a lapse occurs,
in which case it makes a random move (lines 1–2). Otherwise, the model builds
the root node to represent the current state (line 3) and repeats a procedure to
build a partial tree. On each iteration, the algorithm selects a node in the tree
for further exploration (line 4). The selectnode procedure recursively selects the
successor node with the maximal heuristic value until it reaches a leaf node. The
selected node is expanded (line 5) by the expand(n) procedure, which generates
successor nodes of the selected node n and assigns each of them a value using the
modified heuristic function Hλ. Successor nodes with value less than the best
move minus a threshold are pruned from the game tree; the remaining nodes are
added to the partial tree.

The backpropagate procedure (line 6) recursively updates the values of the
predecessor nodes up to the root of the tree. Each node value is assigned the
maximum value of its successors. The algorithm iterates for a random number
of iterations, with a fixed probability to stop each iteration. Finally, the model
returns the move with the highest value (line 7).



Do People Think Like Computers? 217

Algorithm 2. Main-model(State s, Parameters {λ,W, lapse, stop}):
1 if lapse then
2 return random-move

3 root = node(s)
4 while !stop do
5 n=selectnode(root)
6 expand(n)
7 backpropagate()

8 return argmaxni∈Succ(root)V (ni)

3.5 Conv-net Model

We develop an alternative model based on convolutional neural networks, which
have recently been used successfully to play Go [7,8]. Our convolutional neural
network (CNN) model treats the game as a classification problem, learning to
assign 1 of 36 labels to a board, represented by a 4 × 9 × 2 binary tensor. The
network has three layers: an input layer, a hidden convolutional layer, and an
output layer. The convolutional layer contains 32 4 × 4 × 2 filters with rectified
linear activation functions. There is no pooling layer between the convolutional
layer and the fully output layer. The output layer is a fully connected layer, to
which two nonlinearities are applied: the first is a softmax function to convert
the output to a probability distribution over the 36 possible labels, the second
is a filter that forces zero probability to be assigned to occupied squares.

We fit the CNN model using stochastic gradient descent with Nesterov
momentum. To reduce overfitting, we introduce random dropout (p = 0.75)
between the hidden layer and the output layer and an early stopping condition
during training. We use a five-fold cross-validation scheme with the same splits
as used for fitting the main model, setting aside 60% of the data as training data,
20% as validation data used for the early stopping condition, and 20% as final
test data. Because we did not collect sufficient data to fit the network to each
subject individually, we aggregate the data across all subjects for training and
report the average log-likelihood per subject. Additionally, we apply reflections
to augment the training data to achieve a sufficiently large training set.

3.6 Opt-rand Model

The opt-rand model is a mixture between optimal (i.e., minimax) and random
play with only one parameter: the mixture weight. Because human subjects
do not have access to the minimax values of each state, we consider the opt-
rand model psychologically implausible. However, it still serves as an important
control to verify whether our models predict only the subjects’ frequency of
making mistakes, or more general preferences.
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3.7 Fitting the Model Parameters

We use maximum-likelihood estimation to infer the parameter values Θ that
maximize the likelihood function

∏
(at,st)∈D P (at|st,Θ) where D is the set of

all actions performed by a subject in all the states they encountered. Because
computing the likelihood analytically or numerically is intractable, we instead
estimate the log probability of a subject’s move in a given board position using
inverse binomial sampling [12]. We use a uniformly unbiased estimator with vari-
ance equal to the Cramer-Ráo bound, and optimize the log-likelihood function
with multilevel coordinate search [13]. We report log-likelihoods for all models
with five-fold cross-validation.

4 Results

We compare our models and show which of them best describe subjects’ choices.
To demonstrate that all parts of our main model are important, we compare our
model to lesion models generated by removing model components (in Sect. 4.1).
Next, we show two specific patterns in human behavior that our model accu-
rately predicts (in Sect. 4.2). We then show that our model is able to predict the
subjects’ responses in two related tasks (in Sect. 4.3). Finally, we use the model
to explain differences in the decision process between stronger and weaker sub-
jects (in Sect. 4.4). We find that the model, fitted to stronger subjects’ choices,
uses larger trees and has less noise.

4.1 Predicting Human Choices with Our Models

Fig. 4A depicts the cross-validated log-likelihood of our models (Main, Myopic,
Conv-net and Opt-Rand) for each subject, playing against a human opponent.
We also plot the log-likelihood of a completely random model (chance). Our
models’ log-likelihoods are better than chance, demonstrating their ability to
predict subjects’ responses.

We find that our main model predicts subjects’ choices better than the
Myopic model, suggesting that people indeed build decision trees. The Conv-
net model also performs worse than the main model, but this primarily reflects
its tendency to overfit training data. All our models perform much better than
the Opt-Rand mixture model, demonstrating their ability to predict more than
only the subjects’ error rates.

We next perform a lesioning comparison, examining the relative contribution
of different components in our main model by removing them, one at a time. We
remove either the pruning rule, the feature-drop procedure, or any of the five
features. All of the lesioned models perform worse than the original (Fig. 4B),
indicating that these model components are necessary to the main model’s ability
to predict human behavior. The most and least important features are the 3-in-
a-row and the center, respectively. This also demonstrates that the pruning and
feature-drop are necessary to capture the subjects’ selective attention, either to
specific patterns on the board or to a subset of the decision tree.
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Fig. 4. (A) Log-likelihood of our models for each subject. Our main model performs
better than chance, Opt-Rand, Conv-net and the Myopic model. (B) Log-likelihood
of our models and lesions, averaged across subjects. For each model, the error bars
denote the standard error of the mean log-likelihood difference with the main model.
The main model performs best, although some lesion models come close.

4.2 Summary Statistics

We have shown that our main model predicts the subjects’ choices better than
alternative models. Here, we compare the model prediction directly to the sub-
jects’ choices, using two summary statistics. For each move played by each sub-
ject, we measure (1) the distance from the square they moved on to the center of
the board, and (2) the number of pieces on the 8 neighboring squares. We plot
the average of these statistics as a function of the number of moves played in a
game (Fig. 5). We also measure these statistics for moves played by the model in
the same positions, as well as random moves. On average, subjects move closer
to the center and on squares with more neighboring pieces than random. The
model closely matches these two aspects of human play.

4.3 Generalizing Predictions of Our Model

We demonstrate our model’s ability to generalize beyond predicting the subjects’
choices during full games by inferring parameters for each individual subject
from their choices during games, and predicting their 2AFC choices and board
evaluations without additional fitting.

To predict a choice on a 2AFC trial, we execute our tree search model as
usual, except that we restrict the successor nodes of the root node to the two
candidate moves and omit the pruning step. To predict board evaluations, we
execute our model and take the value of the root node. If the model lapses, we
set this value to 0. Then, we map this value into the subject response interval
[1,7] using score = 3 + 4 tanh(value/20).

The average accuracy of the 2AFC prediction across subjects is 56.1 ± 1.1%
(Fig. 6A), and the average correlation between the predicted and observed
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Fig. 5. The predicted and the observed behavior on (A) the average distance from the
move played by a subject to the center of the board. (B) The number of pieces on
neighboring squares. Our model reproduces both these patterns. The insets illustrate
how these metrics are defined for a given board and a subject’s move (open circle).

Fig. 6. (A) Percentage of correctly predicted choices on the 2AFC task for each sub-
ject. (B) The correlation coefficients between each subject’s board evaluations and
evaluations predicted by the model. In both cases, we fitted the model parameters on
subjects’ choices during games against AI opponents. Both predictions are better than
chance for almost all subjects.

evaluations is ρ = 0.36 ± 0.04 (Fig. 6B). The prediction is better than chance for
34 out of the 40 subjects in the 2AFC task and for 38 subjects in the evaluation
task.

To put these results into context, we develop an oracle model, which selects
the optimal move on each 2AFC task (with random tie-breaking). On the board-
evaluation task, the oracle responds 1, 4 or 7 for winning, drawn and losing posi-
tions, respectively. Overall, the oracle model predicts subjects’ choices slightly
worse than our main model (percent correct 2AFC: 55.3 ± 0.6%, correlation
predicted/observed evaluation: ρ = 0.30 ± 0.03, Fig. 7).



Do People Think Like Computers? 221

Fig. 7. (A) Performance of our main and oracle models on each category of candidate
moves. (B) Correlation between predicted and observed evaluations on positions with
the same game-theoretic value. In both cases, our model performs on average slightly
better than the oracle model. Importantly, our model predicts subjects’ preferences
when there is no correct decision.

To explain our model’s advantage over the oracle model, we compute the
percent of correctly predicted 2AFC choices for the main and oracle models for
each category of trials (win/win, win/draw, etc.).

For trials where one move is strictly stronger, our model performs compa-
rably to the oracle model, showing that our model does capture the subjects’
error rates. For trials where both moves are equally strong, the oracle predicts
at chance, but our model performs better, demonstrating that our model pre-
dicts the subjective preferences. In the board-evaluation task, we compute the
correlation between predicted and observed evaluations across all trials in a cat-
egory. Again, the oracle model predicts at chance, but our model can predict the
subjective evaluations, for either winning or losing positions (but no drawn).

4.4 Playing Strength

The model parameters that we infer for each individual subject reflect how
human thought processes differ between subjects, allowing us to examine the
differences between strong and weak players. We measure a subject’s playing
strength by combining 4 metrics: (1) the Elo rating [14] computed from their
results in games against AI opponents, (2) the frequency at which they make
errors in their games, (3) the percentage of correct choices in the 2AFC task,
and (4) the correlation of their board evaluations with the game-theoretic values.
All 4 performance metrics correlate with each other across subjects as shown in
Table 1.

The playing strength of heuristic search algorithms depends on properties
such as the size and depth of the game tree or the ‘quality’ of the heuristic func-
tion. Because our model is stochastic, we can also improve its playing strength
by reducing noise. Among these factors, which is responsible for differences in
human playing strength?
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Table 1. Player strength correlation matrix

Elo Success rate 2AFC Evaluation

Elo 1 0.83 0.61 0.47

Success rate 1 0.47 0.44

2AFC 1 0.43

Evaluation 1

Fig. 8. Correlation between playing strength and size of decision tree, depth of leaf
nodes, entropy of the predicted distribution, and heuristic quality. We use Spearman
correlations to mitigate the effect of outliers. Stronger players build larger trees and
have less noise but do not necessarily have better heuristics or search deeper.

For each subject in Experiment 2, we infer model parameters from their
choices in games against AI opponents. We let the model with these parameters
simulate moves in all positions from the games in Experiment 1. We measure the
size of the decision tree built by the model, the average depth of the leaf nodes,
the entropy of the model’s move distribution, and the correlation between the
heuristic function H(s) and the game-theoretic value.

In Fig. 8, we plot these 4 metrics against the playing strength of each subject.
The tree size and entropy correlate with playing strength, but the depth of search
and heuristic function quality do not; stronger players search more, have more
precise board evaluations, and make fewer attentional lapses.
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5 Summary and Future Work

We described a model inspired by heuristic search that mimics humans playing
a simple combinatorial game. We fitted the model’s parameters to individual
subjects to capture differences in playing styles. We also suggested alternative
models and compared our model to lesions in order to show that the components
of our model are necessary to predict human behavior. We then showed that
our model predicts subjects’ choices in 2AFC tasks and board evaluations. We
analyzed player strengths and conclude that stronger players build larger trees
and have less noise.

For future work, we plan to investigate whether our models can also describe
choices of expert players. We plan to run multiple sessions of Experiment 2 to
measure improvements in the subjects’ playing strength and investigate which
aspects of our model (tree size and depth, noise or heuristic quality) change
as a result of experience. We also plan to investigate the encoding of board
states in human memory by asking subjects to memorize and then reconstruct
board positions, similar to what was done previously in Chess [15]. We are also
interested in finding physiological and neural correlates of our model. We plan
to record response times, eye movements, and neural activity as measured by
an fMRI scanner, and use that as further evidence that our model captures the
cognitive processes humans use to play games.
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